
x-641-64- 2 70 

TM X-55102 

- I 
~ 

- DECOMPOSITION . 

- OF THE- SCHRODINGER EQUATION 

AND A-THIRD PARTICLE OF FINITE MASS 
FOR TWO IbENTlCAl PARTICLES 

. 
- 

.. . . .  

c 

BY -\. 

- A. K. BHATIA- u 
0 
CT a 
v) 
f- 
0 

- i 
-. 

. -  
A. TEMKIN 

. 

Y 
0 

Y 
a 
Lu 

SEPTWBER 1964 
- 

, 

_ i  



4 -  

- .  

.. 

- .  

- 1 -  

Decomposition of the Schr8dinger Equation for 

Two Ident ica l  Par t ic les  and a Third Pa r t i c l e  of 

F in i te  Mass 

t A. K. B h a t i a  md A. Temkin 
Theoreticti1 Division 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland 

An angula.r momentum decomposition of the SchrBdinger equa- 

t i on  i s  extended t o  the  case noted i n  the t i t l e .  (The case of 

three unequal mass par t ic les  i s  t rea ted  i n  an appendix.) The 

decomposition i s  effected with the use of a symmetric choice of 

Euler angles, and the rad ia l  equations a re  given i n  two use lm 

forms. 

heimer equations for H2 

The radial equations a r e  shown t o  yield the Born-Oppen- 
+ 

i n  the l imi t  t ha t  the two ident ica l  

pa r t i c l e s  approach i n f i n i t e  mass. Other aspects of t h i s  l imi t  

a r e  discussed, and general r u l e s  which r e l a t e  the  t o t a l  angular 

momentum s t a t e s  of the three-body system with the molecular 
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INTRODUCTION I 

t i o n  

I n  a previous review' we have presented a detai led investiga- 

of the decomposition of the Schddinger equation f o r  two iden- 

t i c a l  par t ic les ,  obeying the exclusion principle,  i n  the  cent ra l  

f i e l d  of an i n f i n i t e l y  heavy center of force. This, of course, 

i s  the prototype of the two-electron atom. 

t h i s  ideal izat ion i s  the r e c o i l  e f f ec t s  of the nucleus. It i s  

the primary purpose of t h i s  paper ti give the extension of the 

above decomposition t o  include the f i n i t e  mass of the previously 

assumed fixed center. (The changes necessary i n  the radial equa- 

t i o n s  f o r  three unequal mass pa r t i c l e s  a re  given i n  Appendix B.) 

The major correction t o  

The resul t ing decomposition i s  s t i l l  suf f ic ien t ly  general t o  

a l low an a rb i t ra ry  mass t o  the iden t i ca l  pa r t i c l e s  as wel l  as the 

nonidentical t h i r d  par t ic le .  A s  a ra ther  d i f fe ren t  l imi t  of this  

system from the previous one, one can consider the l imi t  i n  which 

the  two ident ica l  pa r t i c l e s  become i n f i n i t e l y  heavy and the t h i r d  

par t ic le  assumes the electron mass. This corresponds t o  the Hz 

limit, and it i s  of considerable i n t e r e s t  t o  see how the radial 

equations and the three-body symmetries go over i n t o  the  equations 

and symmetries of the Born-Oppenheimer approximation i n  t h a t  case. 

+ 

This i s  par t icu lar ly  relevant a t  the  present t i m e  since the 

absorption of 

can presumably 

counterpart of 

H2 limit will t 

mesons i n  hydrogen' v i a  the  molecule ( p  - )c - p)  

only be explained by the deviations of t h i s  p mesic 

H2 from the Born-Oppenheimer approximation . The 

be the subject of Section 111. 

+ 3 

.c 

. -  

.. 
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I1 KII 'GTIC ENERGY AND RADIAL EQUATIONS 

Let  6 and fs be the  coordinates of two iden t i ca l  par t ic les ,  - - 
each of mass m, i n  an a rb i t r a ry  fixed coordinate system. Let 

6 
energy can be writ ten: 

be the coordinates of a t h i r d  par t ic le  of mass M. The k ine t ic  
.I 

With the introduction of the difference vectors 

and t he  center of mass coordinate R,: 

- 
2 m c M  
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the  k ine t ic  energy becomes 

where 

m M  
w +  M r =  

The last term i n  (2 .3a )  i s  clear ly  the  k ine t ic  energy of the 

center of mss. 

of $ 

of mass energy, E 

energy E f o r  a Schrgdinger equation with 

Thus we can replace the k ine t ic  energy by an effect ive k ine t ic  

energy governing the in te rna l  motion 

I n  any closed system the potent ia l  w i l l  be independent 

so  that the  e f fec t  of t h i s  term w i l l  be t o  subtract  a center 

f romthe  t o t a l  energy, ET, t o  give an effect ive 
CM’ 

the last term i n  ( 2 . 3 a ) h b s e ~ t .  



t o  be used with an effect ive energy 

T now d i f f e r s  i n  form from the kinetic energy of the two- e 
1 electron fixed nucleus problem by the addition of the f i n a l  cross 

term. This addi t ional  term i s  the well-known mass polarization term 

which i n  most helium applications i s  t reated i n  perturbation 

4 theory (which i s  quite adequate fo r  the present experimental accuracy). 

We s h a l l  include the e f f ec t  of th i s  term exactly. 

It w i l l  be recal led from I t h a t  the major task  i n  effectii 'g 

the decomposition i s  t o  f ind  the kinet ic  energy i n  terms of the  

N e r  angles and residual  coordinates i n  place of the pa r t i c l e  

coordinates, We introduce formally the 

same Euler angles as i n  I; namely Q the angle between the space-fixed 

z direct ion and r l  x r? *, G I ,  

x direction, and 

Now, since the  form of V + v i s  the same as i n  I, t h e  r l  r2 

transformation of those terms i n  terms of  the  three Euler angles and 

three res idua l  coordinates can simply be taken over from I. 

A h h 

9 the angle between the  space-fixed 
h a  h x "z' ., s', and !2 the angle between x"' and (r2-r1). 

a z 

We .. 

need only consider therefore the remaining cross term, and since 

we handle it i n  a very similar manner, we shall be mercifully b r i e f .  

I n  spherical  coordinates the cross t e r m  i s  



I c f + 
=zP, 

where 

( 2 . 6 )  
. -  

(2.7) 

(2.10) 

,. 

(2.11) 

When the  residual  coordinates are  taken as rl, r2,Q12, then the 
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transformation only involves first and second partial derivatives of 

*I 9, J '2 J ?& with respect to 8,  3 , 2 ,  QI2. (The 

- .  latter are referred to as TClc , 4 = 1 . . .4 below). 
can therefore be written 

The cross term 



- 8 -  

The resu l t s  i n  the form of the coefficients of the derivatives 

w i t h  respect t o  

given i n  Table I. 

whose effect on the vector spherical  harmonics have been f'ully 

explored i n  I. 

Xd expressed as functions of 8, 9 , + , Q12 axe 

Finally we can wri te  the cross term as an operator . -  

hl and h2 are  given i n  (164) and M2 - i s  the well-known t o t a l  
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angular momentum squared operator, (I41), i n  terms of the N e r  angles. 

The wave function i s  now expanded i n  the form (155) 

(2.14) 

where 

the simultaneous eigenfunctions of M2, Mz and el2. The operator 

V r ,  as expressed (2.13) i s  now such t h a t  i t s  operation on 

are the exchange vector spherical  harmonics (I54), 

.c 

v 
these 

the radial equations can simply be derived as an addition of terms 

-kl - a:’=)* f’unctions can readi ly  be found from (I65,66). Thus 

t o  what was derived i n  I. Below we shall give the  equations i n  two 

forms; the  f irst  i n  terms of simultaneous coupled equations f o r  the 

“radial” m c t  ions 
X f  

f ,  ( k l ]  ‘r* ,e,, ) : 
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( 2.15 a 

I 
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Y 
The numbers B,, and Be are dcfined in (I68), and S-wave 

operator I, in (171). The fact that the equations are in this 
012 

first form are coupled for a given 

with symmetric and antisymmetric functions 

implies that we a r e  dealing 
. -  

where the upper sign refers to the totally space symmetric wave 

function (singlet) and the lower,,the spat:= antisymmetric solution 

(triplet). 

to half the rl - r2 plane with an appropriate vanishing of the func- 

tion or its normal derivative along rl = r2 (cf. Eqs .  (172) and (173)). 

to 

The (anti) symmetry means that ' G T ~  ca3 confine the solution 

The second form ol these equations that we shall give involves 

the "radial" coordinates rl, r2, rlz and involves the asymmetric 

functions Fc 
- .  

ana F l  U 
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where, on the rhs, Q12 i s  understood t o  be expressed as a function 

of rl, r2, r12 through the l a w  of cosines. 

we have 

By v i r tue  of (2.16) 

This re la t ion enables us t o  write the 

f o r  a given n ( the  various ai 's are  of course coupled t o  each 

other)  but i n  a domain covering the whole rp - r 1 plane. 

convenient i n  writ ing t h i s  second form t o  combine some of the terms 

multiplied by 2 . P/M i n  (2.13) with Lr (given i n  (181) ) t o  form a 

new S-wave operator L' : 

equations i n  an uncoupled form 

It i s  a l so  

12 

r12 

(2.18) 

(2.19) 

We a l so  use the quantity /' 



+ 

(2.21) 



I11 THE LIMIT 

Consider the l i m i t  i n  which the mass of the  two ident ica l  par- 

t i c l e s  becomes i n f i n i t e  and the t h i r d  pa r t i c l e  re ta ins  i t s  f i n i t e  

+ mass. 

molecular ion  the two nuclei  are not i n f i n i t e l y  heavy and the system 

should be described by the complete equations we have given i n  the 

previous section. Mathematically t h i s  l i m i t  i s  defined by 

We sha l l  c a l l  t h i s  the H2+ l i m i t  even though i n  a r e a l  H2 

m = M  3-0 
P 

M = m  e 

l i m  /A = m 
M + o o  e 
P 

The k ine t ic  energy becomes 



. .  

Letting 

From ( 3 . 3 )  i s  obviously the vector from the midpoint of the two 

nuclei  t o  the electron; we f ind  fo r  the  effect ive k ine t ic  energy: 

so  t h a t  the  Schr8dirger equation becomes 

(3.31 

(3 .5)  

5 
This is, of course, the Born-Oppenheimer approximation fo r  the  electronic  



+ motion of H, , 

The po ten t i a lv ,  being the a t t r ac t ion  of the two nuclei considered 

as fixed centers t o  the electron, i s  not spherically symmetric. 

A s  a r e s u l t  the t o t a l  angular momentum of the  electron i s  not con- 

served but i t s  z-component i s  ( the  z-axis 

joining the  two nuclei) .  Appropriate solutions of (3.6) can there- 

fore be written 

being defined as the l i n e  

where Q and 4 are  the polar angles of E ( the vector coordinate of 

the e lec t ron) ,  Substi tution of (3.7) in to  (3.6) yields  

where A = 0, 1, 2, ... correspond t o  the 1 , 7- , b ... 
+ electronic  s ta tes  of H2 . The solutions can further be separated 

in to  even o r  odd electron par i ty  ( 9. -+ T-  1~ , Q + TT + 9 1 

corresponding t o  gerade and ungerade classes. - 
O u r  purpose i s  t o  derive ' (3 .8)  from the  r a d i a l  equations of the 
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_ .  

-t t h r e e - b o d y  sys tem i n  t h e  H 2 -  l i m i t .  T h i s  p r o v i d e s  n o t  o n l y  a 

u s e f u l  check  of t h e  r a d i a l  e q u a t i o n s  t h e m s e l v e s ,  b u t  i t  allows f o r  

t h e  v e r i f i c a t i o n  o f  g e n e r a l  r u l e s  which re la te  t o t a l  a n g u l a r  momen- 

tum s ta tes  o f  t h e  t h r e e - b o d y  sys t em t o  t h e i r  Born-Oppenheimer c o u n t e r -  

p a r t s  as one-body sys t ems  i n  an  a x i a l l y  symmetr ic  f i e l d .  

We s h a l l  d o  t h i s  i n  t h e  f o l l o w i n g  way: w e  s h a l l  a c t u a l l y  s h o w j v r  

+ t h e  f i r s t  c o u p l e  of  t o t a l  4 r a d i a l  e q u a t i o n s  i n  t h e  H 2  l i m i t  

t h a t  t h e y  r e d u c e  t o  t h e  form (3.8) f o r  s p e c i f i c  v a l u e s  o f  A. 

w i l l  e n a b l e  u s  t o  adduce  a g e n e r a l  r e l a t i o n s h i p  between t o t a l  

T h i s  

- s t a t e s  and t h e  Born-Oppenheimer e l e c t r o n i c  s t a t e s  

t h a t  t h e y  c o r r e s p o n d  to .  Then we  s h a l l  d e r i v e  a fo rmula  r e l a t i n g  

t h e  p a r i t y  of t h e  m o l e c u l a r  e l e c t r o n i c  s ta te  t o  t h e  p a r i t y  and  

exchange  c h a r a c t e r  of t h e  th ree -body  wave f u n c t i o n .  

A .  t = O  

From ( 2 . 2 1 )  i n  t h e  l i m i t  d e f i n e d  by ( 3 . 1 )  w e  have  

where L '  

d i f f e r e n t i a l l y  o n l y  on two c o o r d i n a t e :  rl and 1-2. T h i s  i s  a l r e a d y  

t h e  seed  of  t h e  Born-Oppenheimer l i m i t  which w i l l  be  seen  t o  a p p l y  

t o  a l l  4 e q u a t i o n s .  

i s  g i v e n  i n  (2 .19 ) .  The l a t t e r  i s  seen  t o  depend 
ri 2 

L e t t i n g  7 = I +  ( %, + f = k t . r  a m 1  p = k:--. , 
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we f ind  

Now l e t t i n g  r = ,cos+ 

a 
E 
a7 = 

= k I / q = +  '' we f ind  further 

Thus ( 3 . 9 )  reduces t o  (3.8) fo r  A = 0. the p =  0 

rad ia l  equation reduces t o  tha t  fo r  

heimer limit. 

s t a t e s  i n  the Born-Oppen- 

The difference between the 1 and higher A equations 

consists of terms proportional t o  (r2 s in  21p )-l. 

the  re la t ion  

We need only note 



so that the Born-Oppenheimer equations in general can be written 

B. 4 = 1 even parity 

For k = 1 and H = 0, Eq. (2.21) reduces to 

Comparing with Eq. (3.8b) we see that this is the Born-Oppenhelmer 

equation for -IT states. 

C. 4 = 1 odd parity 

We get from Eq. (2.20) for e =  1, x = 1 



It is also convenient to derive a redundant equation. Letting 

rl ;3 r2 in (3.15a) and using (2.181, we obtain 

In order to show the Born-Oppenheimer limit of these equations 

we introduce the following transformation: 

(3.18) 

This transformation has obviously not been pulled out of a hat. 

Rather it corresponds to a transformation of the N e r  angle$ 

which w i l l  be further discussed in the Appendix A .  
We now make this transformation in (3.15). Multiply- the 

trqnsformed O f ( 3 - 1 ~ 6 )  b y  C 4nd ZL#dtmy t o  the 
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transformed of (3.15a) gives 

Subtracting gives 

Subtracting Eqs.  (3.19a) and (3.l9b), we get 

w h i c h  according t o  (3.b) corresponds t o  

Oppenheimer l i m i t  

states i n  the Born- 
- _  

~. Adding Eqs. (3.lga) and (3.lgb) we g e t  

w h i c h  according t o  Eq. (3 .b)  corresponds 



- 22 - 

t o  s t a t e s  i n  t h e  Born-Oppenheimer l i m i t .  

T h e r e f o r e  f o r  4 = 1 w e  g e t  t w o  n s t a t e s  and  one  C s t a t e .  

D. .P = 2 ,  even  p a r i t y  

0 Eq ( 2 . 2 1 )  i n  t h i s  case i n v o l v e s  t h e  r a d i a l  f u n c t i o n s  F 2 ,  F:, 
N 

2 and F 2 .  Making t h e  t r a n s f o r m a t i o n  

N 

F' 
2 

y i e l d s  t h r e e  real  e q u a t i o n s  f o r  t h e  f u n c t i o n s  H 2 ,  H 2  

r e a d i l y  c o n s t r u c t  l i n e a r  c o m b i n a t i o n s  o f  these e q u a t i o n s  which are 

t h e  C, 'iI, and  G s t a t e s  of  H 2  . 

, H'. One c a n  
2 - 2  0 

+ 

E. ,f+ = 2 ,  odd p a r i t y  

Here one  makes t h e  t r a n s f o r m a t i o n  

= - i H  2 e ia/2 + H 2  e - i ~ / 2  
1 - 1  

- i q / 2  2 
2 i c / 2  

N = - H  e + i H  e 
1 - 1  F '  

2 

The r e s u l t a n t  e q u a t i o n s  c a n  t h e n  be shown i n  a similar manner t o  be 

e q u i v a l e n t  t o  n and a s t a t e s  o f  H . + 
2 

T h e r e f o r e ,  i t  c a n  be shown t h a t  f o r  .p = 2 ,  t h e r e  are E, n, 4 

even  p a r i t y  s t a t e s  and  f o r  odd p a r i t y  t h e r e  are r~ and s t a t e s .  

. .  

. .  

(3 .25)  

(3.26) .- 
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T h i s  c h e c k s  t h e  well-known r u l e  t h a t  f o r  an a r b i t r a r y  .p a l l  

6 A s ta tes  e x c e p t  A = 0 are doubly  d e g e n e r a t e  ( p o s i t i v e - n e g a t i v e )  , 

-. and f o r  C states  t h e  p a r i t y  o f  t h e  & e q u a t i o n  which y i e l d s  t h i s  

s t a t e  i s  g i v e n  by 
- .  

( - 1 )  + = 1. 

I f  one  c o n s i d e r s  t h e  f i n i t e  mass of t h e  n u c l e i ,  t hen  t h e  degene racy  

o f  t h e  p. + 0 s t a t e s  i s  l i f t e d  g i v i n g  r i s e  t o  t h e  A - d o u b l i n g  

phenomenon . Our r e s u l t s  also conform the  r u l e  A 5 1. 6 6 

I n  order t o  f a c i l i t a t e  t h e  d i s c u s s i o n  o f  t h e  p - p - p m o l e c u l e  

w e  a l so  g ive  t h e  r e l a t i o n  o f  t h e  e l e c t r o n i c  g e r a d e  and u n g e r a d e  

classes t o  t h e  t h r e e - b o d y  symmetr ies .  T h i s  r e l a t i o n  i s  

i E  = B E,, 

which can  r e a d t l y  be v e r i f i e d  t w o  ways. F i r s t  b o t h  t h e  l e f t  and r i g h t  

s i d e s  have  p r e c i s e l y  t h e  same e f f e c t  on t h e  H a m i l t o n i a n ,  and second 

i f  one  s t a r t s  w i t h  a s p a t i a l  c o n f i g u r a t i o n  of t h e  n u c l e i  and t h e  

e l e c t r o n ,  t h e n  t h e  o p e r a t i o n  o f  i E  w i l l  y i e l d  t h e  same f i n a l  c o n f i g u -  

r a t i o n  as P&,%. 7 

(3.27) 

A s p e c i f i c  example of  t h e  above i s  p r o v i d e d  by f = 0 ( t h e r e  i s  

We o n l y  even  p a r i t y  i n  t h i s  case) and the 4 = 1 ,  odd p a r i t y  cases. 

have  shown above t h e  r a d i a l  e q u a t i o n s  i n  b o t h  cases a p p r o a c h  t h e  C 

e. 



- 21, - 

+ e q u a t i o n s  o f  H . N e v e r t h e l e s s  t h e  v e c t o r  s p h e r i c a l  harmonic 

p o r t i o n s  of  t h e  comple t e  wave f u n c t i o n s  a re  a p p r o p r i a t e  t o  .z, = 0 

and .p = 1 r e s p e c t i v e l y ,  and are hence  d i f f e r e n t .  The l o w e s t  

j = o wave f u n c t i o n  c o r r e s p o n d s  t o  t h e  ground C s t a t e  o f  H 

whereas  t h e  lowest 4 = 1 odd p a r i t y  wave f u n c t i o n  c o r r e s p o n d s  t o  

2 

+ 
g 2 

t h e  f i r s t  e x c i t e d  r o t a t i o n a l  l e v e l  of  t h e  

+ H . I t  i s  t h e  l a t t e r  s t a t e  which i n  t h e  

o f  H +, namely t h e  molecu le  p - v, - p ,  i s  

2 

2 

C e l e c t r o n i c  s t a t e  of 

p mesonic  c o u n t e r p a r t  

p r i m a r i l y  r e s p o n s i b l e  

g 

8 

. -  

f o r  t h e  a b s o r p t i o n  of i-l mesons i n  hydrogen .  

l a t i o n ’  which o n l y  c o r r e c t s  t h e  Born-Oppenheimer approx ima t ion  t o  

t h e  e x t e n t  t h a t  t h e  e r r o r  i s  r educed  from t h e  o r d e r  + 

The o r i g i n a l  c a l c u -  



( m  p/Mp)li4 t o  the order (mp/Mp) giveSa decay r a t e  of about 560 

sec 

That the bulk of the discrepancy i s  iufact  due t o  the  Born-Oppenheimer 

approximation has been shown by a recent calculation of Wessel and 

Phillipson3 who attacked the problem as a three-body problem and 

obtained a v d u e  of 480 sec-'. 

f a c t  omit cer ta in  coupling terms i n  the radial equation but these 

omissions a re  of the order of ( m p  /Mpl2. 

accurate var ia t iona l  calculation has been made fo r  t h i s  s t a t e  i n  

-1 -1 
whereas the most recent experimental number2 is  464 2 42 sec . 

Their var ia t ional  calculation did i n  

(It shoucld be noted that an 

10 which a l l  terms in the radial equations have been included . The 

calculation w a s  not primarily intended f o r  t h i s  application.) 

Furthermore, we see t h a t  the ground s ta te ,  7 

and i s  derived from the 

par i ty  ( 

the  three-body s p a t i a l  function i s  symmetric and i ts  spin antisymmetric 

( s ing le t ) ,  i.e., a para state. 

place from an 

state of the 

i s  gerade (iE = + 1) ?> 
= 0 equation which is  necessarily even 

1 = o ). From (3.28) it follows t h a t  E12 = + 1, so that 

On the other hand the capture takes 

= 1 odd parity-state,  the  first ro ta t iona l  excited 

'Lg electronic  s t a t e  which according t o  (3 .28)  is  

= -1, i.e., a t r i p l e t  o r  ortho s ta te .  Since the eigenvalue 
r( 

of P is  (-1) we can also write  

; E  = 
n 

I - ' )  E,,  
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APPENDIX A 

This appendix i s  concerned with the  r e l a t ion  between the  present 

Euler angles and another s e t  of  symmetric Euler angles that have 
11,l.t been introduced . Thlsparticular a l te rna te  s e t  differs only as 

concerns . Specif ical ly  it i s  measured from the  l i n e  of 

nodes t o  the larger of the  moments of i n e r t i a  i n  the  par t ic le  plane. 

Letting TD be the al ternat ive azimuth, OUT objective i s  t o  f ind 

pD as a function 9 . We ' sha l l  f ind  that gD depends 

additionally on rl, r2 and Q12, the  significance of which we s h a l l  

discuss further a t  the  end of t h i s  appendix. 

The al ternat ive def ini t ion of the  azimuth i s  given i n  t e r m  of 

a r a t i o  of products of i n e r t i a  i n  a coordinate system measured w i t h  

respect t o  the  center of mass. Letting f; be these coordinates 

the three par t ic les  , we f ind  
- 

3. 

$a =- I . ( l " ,%. .+ t%%i )  - r 

where p~ i = 1, 2, 3 ,  are the  masses of the three par t ic les  and 

( A . 2 )  
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!j b = I J  2 ) are  t h e  vectors from the third par t i c l e  t o  each of 

the  iden t i ca l  particles(although t h i s  analysis allows all three 

masses t o  be different . )  The components of the $i are defined - 

- 
where if and j '  are u n i t  vectors along x'- and y'- axes in the 

pa r t i c l e  plane. 
r " P  
r1 and :2 i n  the  i', 2' coordinate system. 

re la t ions  in to  ( A . l )  and ( A . 2 )  gives the following re la t ions  f o r  f; : 

We have previously given, Eqs.  ( I l5)  and (Il.61, 

Substi tution of these 

u 

f z  x 

kr casCI ;E + 
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(A .10)  

, -  

.I  . 

73 The definition of 9) is given by 

where 

(A .11)  

( A . 1 2 )  

% Y  
L = \  

Substituting (A.5) - (A.10) into (A . l . 2 )  - (A.14)  yield6 

Ae 14 ) 



- 

- 2 9  - 

.. 

where 
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using 

(A.17) 

W i t h  the relation (A.16) one can then transform the wave 

12 f’unction 

. -  

. .  

in to  our form EQ. (2.14), from w h i c h  one derives the re la t ian  between 



a 
(andhence Fen a n d %  

The radial equations which r e s u l t  a r e  consequently precisely 

those t h a t  one would get  d i r ec t ly  from the formulae of D i e h l  et. al. 9 
+ 

i n  the  H2 l i m i t .  

of view of this limit stems from the fac t  t h a t  the axis  t o  Which 

The s i m p ] i c i t y  of t h e i r  equstions from the  point 

i s  measured becomes iden t i ca l  with the  l i n e  joining t i e  nuclei, 9p 
i.e., the z-axis, i n  the Born-Oppenheimer approximation. 

In the  case of all f i n i t e  masses, however, there arises an 

addi t ional  group of terms i n  t h e i r  equations. A comparison with our 

equations indicates  t h a t  i n  general t he i r  equations are more compli- 

cated than ours. In par t icu lar  some of the coeff ic ients  have a more 

complicated analyt ic  behavior. We believe t h i s  is  r e l a t ed  t o  an m- 

gument i n  I which s t a t ed  t h a t  because our m e r  angles depend only 

on the  u n i t  vectors rl and r2 and not on the  nixnitudes of rl snd r2, 

w e  think our N e r  angles are superior; 

separation between angular and radial par ts  which was  implici t  i n  

the expansion of the  complete wave function itself (cf.  (2.14) and 

(A.20)).  

manifestation of such a superior i ty  

differences 

equ&ions. 

h h 

for they r e t a i n  the 

The suggestion that we are  making here is t h a t  a concrete 

res ide  precisely i n  the  

i n  the ana ly t ic  s t ructure  of the respective radial 

The dependence of pb 
In  Agpendix I11 of reference 1 we derived 

on rl and r2 i s  exp l i c i t l y  exhibited i n  

Eqs. (A.16) and (A.l7). 

the  r e l a t ion  between ours and the H y l l e r a a s - B r e i t  Eu le r  angles J-4,15 
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The l a t t e r  have the disadvantage of not being symmetrical, but 

they too depend only on the unit vectors $1 and r2. Therefore 

the relat ions between the respective N e r  angles are  independent 

of rl and r2. 

any significant difference i n  the analyt ic  properties of Brei t ’s  

( P  s t a t e )  rad ia l  equations” as compared t o  our own. 

h 

According t o  the above azgument we do not expect 



- 3 3  - 

Appendix B 

For  three unequal  mass p a r t i c l e s ,  t h e  k i n e t i c  energy  i n  t h e  c e n t e r  

of mass sys tem i s  

where 

The S c h r a d i n g e r  e q u a t i o n  i n  t h e  c . m .  sys tem i s  t h u s  

I t  h a s  been shown how t h e  i n d i v i d u a l '  Lap lac i an  may be w r i t t e n  i n  terms 

of t h e  E u l e r  a n g l e s  and r e s i d u a l  c o o r d i n a t e s  2 ,  , ha , e l , :  
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where F1 and F2 are  given i n  Eqs .  (159, 162). Knowing then the e f f ec t  

of F1, F2 and the  cross term Vhl . 04% on the vector spherical  
? c -  

harmonics v i a  t h e i r  representation i n  terms of the A ,  ’ A L  
qpcrators i n  (I63, 64)  and (2.13), one may readi ly  derive the r a d i a l  

equations f o r  the  general case. As coupled equations i n  terms of the 

r.<:sidual coordinates ‘r, ,tz the  radial  equations are obtained 

ay making the  following subst i tut ion i n  (2.15): 

Since for ml # m2 the equaeions are no longer symmetric with 

respect t o  r l e r 2 ,  it is  necessary t o  solve the  equations for all values of rl 



. .  

. .  

and 12 (as opposed to, say,rl 7/ r2 and an appropriate boundary 

condition when ml i s  ident i ca l  t o  m 2 ) .  

i s  no advantage in defining f’unctions Ft* 

as they w i l l  also be described by a coupled set of equations, 

rather than a s w e  equation (2.21) for the identical particle 

By  virtue of this there 

and Fp 

case. 

the mupled.. fz+- Arnctions, but involving the coordinates 

For t h i s  reason we give below the equations i n  terms of 



Y- 

where 

. .  

_ -  
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and 

The resul t ing radial equations are invariant (except f o r  a relative 

phase fac tor  which does not af fec t  the eigenvalue spectrum) under the  

simultaneous exchange of )e, 2 \ and m, m,. However tbe  equaticns 

are  not ( f o w ) i n v a r i a n t  w r  a simultaneous pernnrtation 09 a~ 

three pa r t i c l e s  (i.e., simultaneous cyclic pernutations of m l ,  e, 

a and rl, 1-2, ru). This is apparently due t o  the  fact that our 

choice of Euler angles siDgles out one pa r t i c l e ,  the pa r t i c l e  with 

mass M, as the  instantaneous origin. This i n  t u r n  means t h a t  the 

l i n e  t o  which the azimuth is measured depends asymmetrically on which 

pa r t i c l e  we c a l l  the origin.  As opposed t o  t h i s  the  E u l e r  angles of 

Holmberg” and Diehl e t  al.12 are invariant under the operation, and 

t h e i r  radial equations are also. 

Since, however, the  transformation between the respective r a d i a l  

functions can be worked out from Eq. (A.131, t h i s  additional symmetry 

can readi ly  be recovered. 

of the u t i l i t y  of the equations is  the analyt ic  properties of the  

equations themselves. 

Appendix A may be more relevant. 

It would seem tha t  a more p rac t i ca l  c r i t e r ion  

In t h i s  respect the discussion near the end of 
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The analysis of Section 111 w a ~  undertaken as a direct  

result of work of C. W. Scherr and M. Machscek on the P-states of 

three-body systems including t h e  Hz+ l imit  ( c f .  referenceio). A t  

the  inception of these considerations, Dr. A, Dalgarno was a vis i tor  

w i t h  the Theoretical Division; we should l ike  t o  thank Dr. Dalgarno 

for valuable discussions in t h i s  connection, 

Dr. Richard Drachman for discussions. 

to our attention by Dr. Arnold Tubis .  

Th& are also due to 

The (p-p-p) problem was brought 

c 
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Coef f'i cient  
v /  

-COS e,, 

TABU I 
Coefficients of the Angular Derivatives i n  

the Cross Term of t h e  Kinetic Energy. a 

Coefficient 

I( 
Derivative 

a2 
be12" 

ji -cot e sin 2 Y 
sin2 eI2 

Derivative 

' a2 
;- 
c 
I 

1 
s i n  Q12 

I - -  ! a  : a@= : -  

5 

A 

- cot e sin 2 y 
sin e s h Z  e,, i b  

L am 

a 
a\y 

a?he dependence on rl and r2 i s  not included. AJJ. unincluded partial derivatives 
have zero coefficients. 


